Руководство по установке систем хранения данных Resilient Cloud Storage

Аннотация

Это руководство предназначено для квалифицированных специалистов по установке систем хранения данных Resilient Cloud Storage (далее – RCS) и связанных с ними аппаратных компонентов.

Опубликовано: 01.03.2017 г.

Оглавление

- Глава 1. Общее планирование размещения
- Глава 2. Начало работы
- Глава 3. Компоненты системы хранения
- <u>Глава 4</u>. Установка и настройка модуля удалённого управления питанием RCSRPCM1501
- <u>Глава 5</u>. Установка интерконнектов RCSI1202
- Глава 6. Установка интерконнектов сети управления RCSCNI1301
- <u>Глава 7</u>. Установка интерконнекта управления оборудованием RCSHRCI1401
- <u>Глава 8</u>. Коммутация комплекта интерконнектов СХД RCS
- <u>Глава 9</u>. Установка координаторов СХД RCS
- Глава 10. Установка модулей хранения СХД RCS

Глава 1. Общее планирование размещения

Для успешной установки системы хранения данных RCS необходимо тщательное планирование размещения оборудования, с учётом доменов отказоустойчивости.

Правильное планирование поможет выполнить установку более эффективно, а также повысить надежность, доступность и удобство обслуживания. Эта глава содержит основные рекомендации для физического планирования и подготовки места установки системы хранения.

Планирование перед установкой

Во время планирования и подготовки к установке системы хранения вы принимаете на себя следующие обязательства:

- обеспечение подходящего места для распаковки, установки и работы системы хранения;
- поддержание необходимых условий эксплуатации системы хранения;
- обеспечение необходимых средств электропитания для системы хранения;
- обеспечение сетевых подключений и прокладки внешних кабелей, необходимых для системы хранения;
- предоставление соответствующей стратегии удалённой поддержки RCS.

Требования к электропитанию и заземлению < 220v 50-60Гц 16A.

Процесс подготовки к установке включает следующее:

- подготовка предварительного проекта установки системы;
- проверка соответствия требованиям к питанию, нагреву, вентиляции и кондиционированию воздуха (HVAC);
- проведение обучения сотрудников работе с системой;
- подготовка предварительного проекта установки системы.

Во время доставки необходимо убедиться, что в помещении достаточно места для выгрузки и распаковки системы хранения.

Акклиматизация

Система хранения не может работать в экстремальных температурах, поэтому перед запуском система должна некоторое время побыть в рабочей температуре. Максимально допустимый диапазон перепада температур при хранении системы составляет 20 °С/ч. Перед включением системе хранения необходимо время для адаптации к новым условиям, не менее 24 часов для акклиматизации. В это время можно продолжать физическую установку системы хранения данных. Если даже через 24 часа присутствует конденсация, прежде чем включать систему, необходимо дождаться полного испарения конденсата.

Глава 2. Начало работы

Прежде чем начать, прочтите следующее руководство, которое поможет успешно выполнить процесс установки.

Для получения помощи при установке обратитесь в службу поддержки RCS или перейдите по ссылке resilientcloudstorage.com

Инструменты

Следующие инструменты не являются обязательными, но могут быть полезны при распаковке и установке системы хранения.

• Отвертки Phillips No1 и No2

Меры предосторожности

Чтобы избежать травм, потери данных или повреждений, соблюдайте указанные меры предосторожности при установке и обслуживании системы хранения:

- пользуйтесь проверенными инструментами и материалами. Использование неподходящих инструментов может привести к повреждению системы хранения;
- подготовьте антистатическую рабочую поверхность: расстелите антистатический коврик на полу или на столе возле системы хранения. Подсоедините заземляющий провод коврика к неокрашенной
- во избежание электростатического разряда избегайте контакта между электронными компонентами и одеждой;
- при обращении с тяжелым оборудованием соблюдайте действующие требования по охране труда
 и технике безопасности;
- не пытайтесь перемещать полностью загруженную стойку с оборудованием. Перед перемещением стойки извлеките из нее оборудование;
- для безопасной выгрузки стойки с поддона требуется не менее двух человек.

ВНИМАНИЕ! При установке оборудования системы хранения всегда используйте заземляющий антистатический браслет и антистатический коврик.

Начало работы

Чтобы избежать повреждения оборудования электростатическим разрядом, соблюдайте следующие меры предосторожности:

- перевозите устройства в антистатической упаковке, такой как проводящие чехлы, футляры и коробки;
- храните чувствительные к статическому электричеству компоненты в соответствующей упаковке до момента установки;

- накрывайте рабочие станции одобренным материалом, устраняющим статическое электричество. Используйте браслет, подсоединенный к рабочей поверхности, а также правильно заземленные инструменты и оборудование;
- не помещайте в рабочую область непроводящие материалы, такие как обычные пластмассовые инструменты для монтажа и пенопластовая упаковка;
- перед прикосновением к компоненту или узлу, чувствительному к статическому электричеству, всегда обеспечивайте правильное заземление;
- не прикасайтесь к контактам, проводникам и схемам;
- используйте проводящие инструменты.

Стойки

Убедитесь, что приняты все необходимые меры предосторожности для обеспечения устойчивости и безопасности стойки.

ОСТОРОЖНО! Чтобы снизить риск получения травмы или повреждения оборудования, соблюдайте следующие рекомендации:

- при обращении с тяжелым оборудованием соблюдайте действующие требования по охране труда и технике безопасности;
- воспользуйтесь необходимой помощью для подъема и размещения оборудования при его установке или извлечении. Для безопасной выгрузки стойки с поддона требуется не менее двух человек;
- выдвиньте регулируемые ножки стойки до пола;
- убедитесь, что стойка равномерно опирается на ножки;
- при установке отдельной стойки прикрепите к ней стабилизирующую опору;
- при установке нескольких стоек надежно прикрепите их друг к другу;
- полностью выдвиньте нижние стабилизаторы оборудования. Перед установкой дополнительных принадлежностей и плат убедитесь, что оборудование должным образом зафиксировано;
- будьте осторожны, задвигая компоненты в стойку по полозьям. При неосторожном обращении полозья могут прищемить пальцы;
- перед выдвижением компонентов из стойки по полозьям убедитесь, что стойка надежно зафиксирована. Извлекайте компоненты из стойки только по одному. В противном случае стойка может потерять устойчивость;
- убедитесь, что цепь электропитания стойки не перегружена. В противном случае это может привести к травмам, пожару и повреждению оборудования. Общая нагрузка стойки не должна превышать 80% от номинальной мощности цепи электропитания. Перед установкой обратитесь в электротехническую компанию, компетентную в прокладке проводки к оборудованию с соблюдением требований к электропитанию;
- всегда загружайте стойку снизу вверх и устанавливайте сначала самые тяжелые компоненты. Это обеспечит устойчивость стойки.

Проверка упаковки

Перед распаковкой коробок убедитесь, что они не имеют вмятин, порезов, потеков и других следов неправильного обращения при транспортировке. В случае наличия повреждения - сфотографируйте упаковку и свяжитесь с поставщиком, приложив фото.

Установка системы хранения

Систему хранения можно установить двумя способами, в зависимости от конфигурации, однако подключение к сети выполняется одинаково:

- установка системных компонентов в фирменные стойки, которые поставляются заказчику вместе с системными компонентами. Системные компоненты поставляются заказчику в отдельной упаковке;
- установка системных компонентов в существующей стойке. Системные компоненты поставляются заказчику в отдельной упаковке и устанавливаются заказчиком в стойке другого производителя.

Контрольный список для установки оборудования системы хранения

Перед началом установки компонентов оборудования системы хранения данных убедитесь, что условия эксплуатации, зазоры для доступа к стойке и требования к электропитанию соответствуют указаниям в документе.

Глава 3. Компоненты системы хранения

ПРИМЕЧАНИЕ Рисунки в этой главе могут использоваться только в качестве примеров и не всегда в точности отображают конфигурацию системы хранения.

В состав СХД RCS входят следующие компоненты:

- Координатор системы хранения (RCSC Resilient Cloud Storage Coordinator)
- Модуль хранения (RCSDM Resilient Cloud Storage Data Module)
- Интерконнект системы хранения (RCSI Resilient Cloud Storage Interconnect)
- Интерконнект сети управления (RCSCNI Resilient Cloud Storage Control Network Interconnect)
- Интерконнект управления оборудованием (RCSHRCI Resilient Cloud Storage Hardware Remote Control Interconnect)
- Удалённое управление питанием (RCSRPCM Resilient Cloud Storage Remote Power Control Module)
- Интерфейсный модуль (RCSIM Resilient Cloud Storage Interface Module)
- Модуль подключения к виртуальной инфраструктуре (RCSVIM Resilient Cloud Storage Virtual Interface Module)

RCSC - Координатор системы хранения

Управляет модулями хранения данных и координирует их работу в единой архитектуре управления данными. Он также содержит информацию о топологии и состоянии всей системы, и о распределении данных внутри хранилища.

RCSDM - Модуль хранения

Обеспечивает эффективное хранение и управление данными с высокой производительностью, а также предоставление доступа клиентов СХД к информации. Кроме того, предоставляет такие возможности,

как мгновенное восстановление данных, клонирование, репликация данных, создание мгновенных резервных копий.

Содержит в своём составе SSD и HDD носители. В наличии имеются различные конфигурации модулей.

RCSI – Интерконнект системы хранения

Шина для объединения модулей в единую систему хранения данных. Обладает высокой пропускной способностью и низкими задержками для взаимодействия модулей системы хранения между собой и доступа клиентов к информации, хранимой в СХД.

RCSCNI - Интерконнект сети управления

Шина управления модулями хранения системы. Служит для мониторинга и управления компонентами СХД с помощью как встроенных средств, так и внешних по проколам SNMP/SSH.

RCSHRCI - Интерконнект управления оборудованием

Шина удалённого управления оборудованием. Обеспечивает возможность удалённого управления электропитанием и консольным доступом, независимо от основной сети управления координаторами и модулями хранения.

RCSRPCM – Удалённое управление питанием

Позволяет производить удаленное включение, отключение и перезагрузку оборудования СХД. Обладает функцией автоматического переключения между источниками питания (ABP), максимальный ток - 16 А в непрерывном режиме. Переключаемые розетки и интерфейс локальной сети (Ethernet) обеспечивают возможность управления отдельными потребителями электропитания в режиме реального времени или в соответствии с задаваемой программой. Даёт возможность администратору устанавливать индивидуальные пороги срабатывания аварийной сигнализации для в соответствии с заданными параметрами электропитания.

RCSIM - Интерфейсный модуль

Обеспечивает подключение к системе хранения по протоколам ISCSI, Fibre Channel, InfiniBand.

RCSVIM – Модуль подключения к виртуальной инфраструктуре

Обеспечивает подключение системы хранения к платформе виртуализации. Является программным обеспечением (виртуальной машиной), устанавливаемой внутрь среды виртуализации.

Глава 4. Установка и настройка модуля удалённого управления питанием RCS — RCSRPCM1501

Эта глава содержит инструкции по установке для квалифицированных специалистов, выполняющих установку модулей удалённого управления питанием системы хранения данных RCS.

Установка модуля удалённого управления питанием RCSRPCM1501

Данный модуль предназначен для обеспечения непрерывной подачи питания на подключенные модули системы хранения данных RCS и индивидуального удалённого управления выходными портами.

ОСТОРОЖНО! Существует опасность поражения электрическим током или поражения в результате воздействия опасных энергетических уровней. Установку и техническое обслуживание должны выполнять специалисты, ознакомившиеся с порядком выполнения работ, мерами предосторожности и рисками, связанными с использованием компонентов, подключенных к источнику переменного тока.

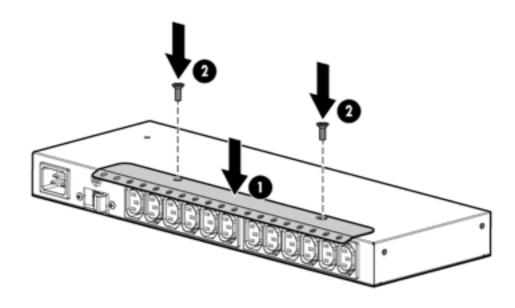
При подключении нескольких компонентов оборудования к источникам питания соблюдайте следующие меры предосторожности.

ОСТОРОЖНО! Для снижения риска возгорания, поражения электрическим током или повреждения источников питания соблюдайте следующие правила:

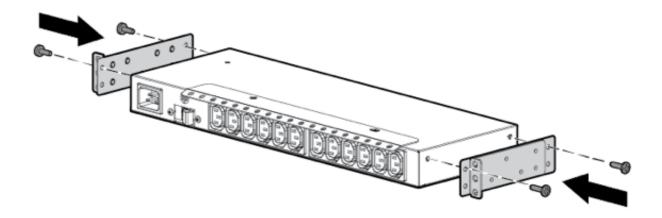
- выполняйте подключение только к контуру с защитой от перегрузки распределительной цепи по току с соответствующим значением номинального тока;
- подключите кабель входного питания к заземленной розетке электросети, которая расположена рядом с оборудованием и легко доступна;
- перед подключением входного питания убедитесь, что все автоматические выключатели установлены в выключенное положение;
- убедитесь, что компоненты, подключенные к модулю, настроены или подходят для работы при той же величине напряжения, что и модуль. Если проверка напряжения не выполнена, это может привести к серьезному повреждению оборудования.

ОСТОРОЖНО! Чтобы уменьшить риск получения травмы в результате высокого остаточного тока, перед подключением питания проверьте заземление.

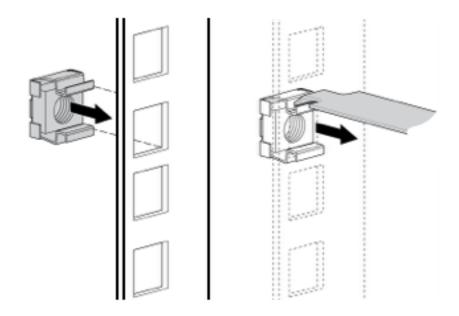
Кабель входного питания должен быть надежно соединен и подключен к сети переменного тока с помощью фиксированного монтажа или использования временно подключаемой заводской штепсельной вилки, подходящей для положительного заземления.

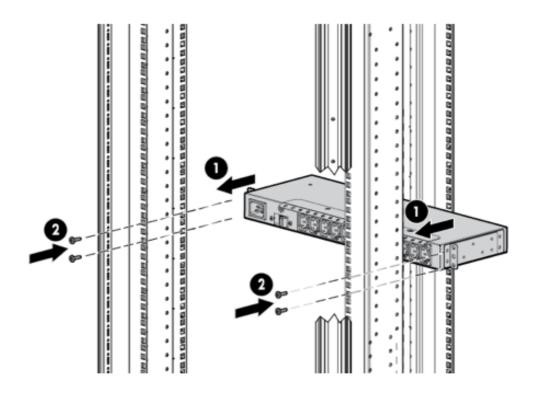

Необходимые инструменты

Для установки требуются следующие инструменты:


• крестовая отвертка Phillips №2.

Монтаж модуля удалённого управления питанием


1. Установите крепежную скобу кабелей питания.


2. Прикрепите соответствующие монтажные кронштейны.

3. Установите клетевые гайки.

4. Установите модуль в стойку и закрепите.

Установка завершена.

Настройка модуля удалённого управления питанием

_			••		_		U
лпа и	DNITERUSTING	WANTERINIA A	$V\Pi \Delta \Pi \Delta \Pi \Pi \Lambda \Gamma \Lambda$	VIII DALIA CONV	питацием пеорхол	имо провести нас	TDUMVMM
יוא ויזוקבן		ФУППЦИИ	удалстпого	yripabherinh	питанием необход	INIMO HPODECTIN HAC	троину модулл.

По умолчанию модуль использует следующие настройки:

IP: 192.168.1.2

netmask: 255.255.255.252

User: rcsadmin

Password: admin

Необходимо подключить модуль патч-кордом к терминалу со следующими настройками сети:

IP:192.168.1.1

netmask:255.255.255.252

Доступ к модулю осуществляется по протоколу ssh.

#: ssh rcsadmin@192.168.1.2

После авторизации необходимо выполнить следующие команды:

1. Назначить имя хоста для модуля (согласно плану установки системы):

\$: rcsSetHostname < new-hostname >

Hostname has been changed to new-hostname. Please relogin or reboot the device to apply the change.

2. Назначить IP-адрес, маску сети, шлюз по умолчанию для сетевого интерфейса (согласно плану установки системы):

\$: rcsChangelpAddress < IP-address > < netmask > < defaultGateway >

To change apply changes, please reboot device

3. Произвести перезагрузку модуля для применения новых настроек:

\$: rcsReboot

- 4. Подключить сетевой интерфейс модуля к интерконнекту управления оборудованием RCSHRCI.
- 5. Проверить доступность и возможность подключение к модулю через назначенный IP-адрес. #: ping -a <new-IP>

#: ssh rcsadmin@192.168.1.2

Полный список команд модуля управления питанием:

\$: rcshelp

rcsPowerReset [portNumber]
rcsPowerOn [portNumber
rcsPowerOff [portNumber]
rcsPowerShow [portNumber]
rcsReconfigureInternalController

- rcsChangelpAddress < ipAddress > < netmask >

<defaultGateway>

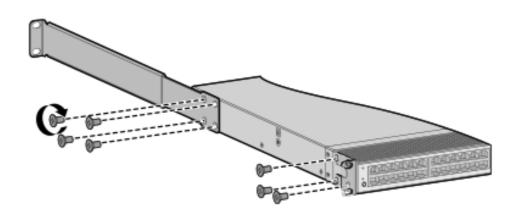
- rcsReboot

- rcsSetHostname < hostname >

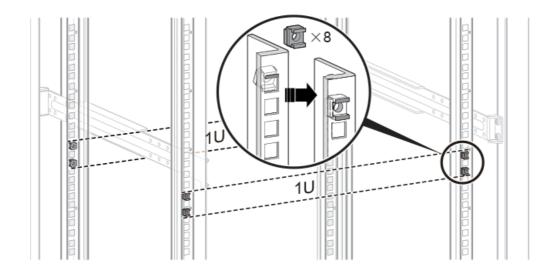
reset given port number power on given port number power off given port number shows given port number reconfigures Internal controller changes ip address

reboot this device set hostname

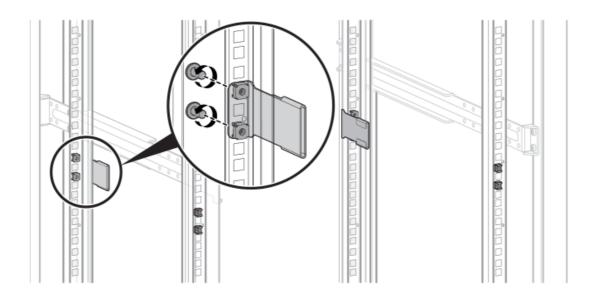
Установка и настройка модуля управления питанием завершена.

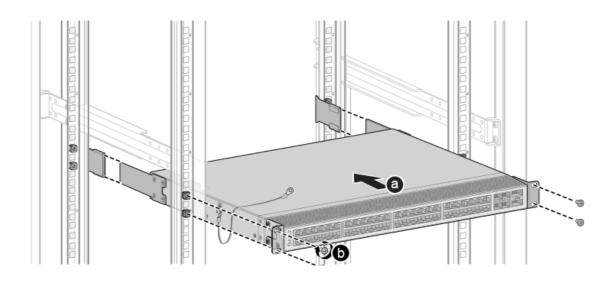

Глава 5. Установка интерконнектов системы хранения RCS — RCSI1202

В этой главе описаны процедуры установки интерконнектов системы хранения данных RCS — RCSI1202. Интерконнекты системы хранения устанавливаются в соседние юниты и, для обеспечения отказоустойчивости, объединяются в stack.


ОСТОРОЖНО! Для предотвращения повреждения оборудования подъем, перемещение и установку модулей необходимо выполнять вдвоем.

Последовательность монтажа интерконнектов:


1. Прикрепите соответствующие монтажные кронштейны.

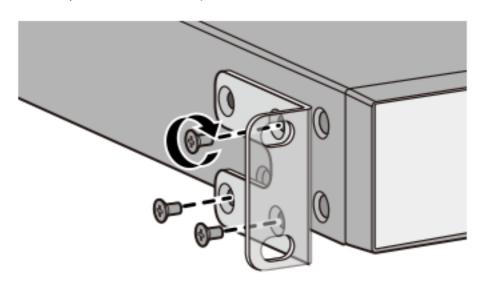

2. Установите клетевые гайки в места монтажа с лицевой и тыльной стороны.

3. Закрепите в стойке с лицевой стороны ответную часть кронштейнов.

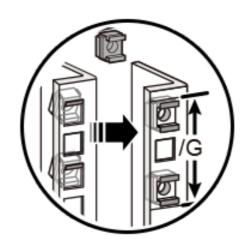
4. Установите модуль в стойку и закрепите.

5. Повторите последовательность действий для установки второго интерконнекта системы хранения.

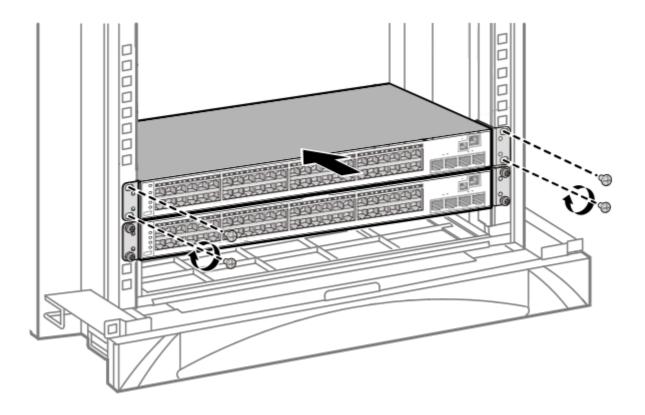
Глава 6. Установка интерконнектов сети управления системы хранения данных RCS — RCSCNI1301


В этой главе описаны процедуры установки интерконнектов сети управления системы хранения данных RCS — RCSCNI1301.

Интерконнекты сети управления устанавливаются в соседние юниты и, для обеспечения отказоустойчивости, подключаются к разным интерконнектам системы хранения.


ОСТОРОЖНО! Для предотвращения повреждения оборудования подъем, перемещение и установку модулей необходимо выполнять вдвоем.

Последовательность монтажа интерконнектов:

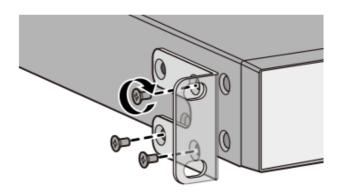

1. Прикрепите соответствующие монтажные кронштейны.

2. Установите клетевые гайки в места монтажа с тыльной стороны.

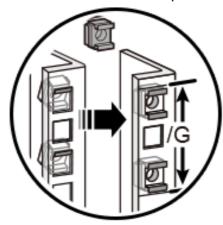
3. Установите модуль в стойку и закрепите.

4. Повторите последовательность действий для установки второго интерконнекта сети управления.

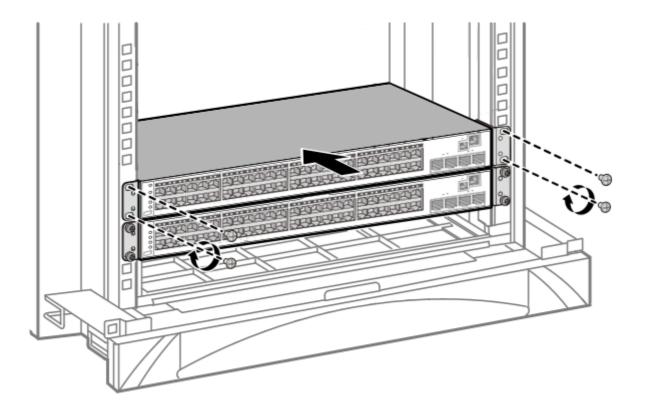
Глава 7. Установка интерконнекта управления оборудованием системы хранения данных RCS — RCSHRCI1401


В этой главе описаны процедуры установки интерконнектов управления оборудованием системы хранения данных RCS — RCSHRCI1401.

Интерконнект управления оборудованием предназначен для обеспечения доступа к интерфейсам управления модулей системы хранения (IPMI) и устройствам управления питанием RCSRPCM системы хранения данных RCS. Для обеспечения отказоустойчивости, подключается к двум интерконнектам сети управления системы хранения.


ОСТОРОЖНО! Для предотвращения повреждения оборудования подъем, перемещение и установку модулей необходимо выполнять вдвоем.

Последовательность монтажа интерконнектов:


1. Прикрепите соответствующие монтажные кронштейны.

2. Установите клетевые гайки в места монтажа с тыльной стороны.

3. Установите модуль в стойку и закрепите.

Глава 8. Коммутация комплекта интерконнектов системы хранения данных RCS

В этой главе описаны принципы коммутации интерконнектов системы хранения данных RCS (1202, 1301, 1401).

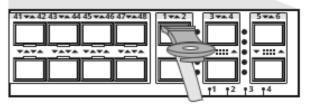
Комплект интерконнектов системы хранения обеспечивает резервирование внутрисистемного и межсетевого взаимодействия модулей системы хранения.

Данные о назначении портов интерконнектов системы хранения:

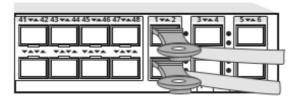
- C 10Gi/1-го по 10Gi/40-ой, порты используются для подключения к серверам.
- 10Gi/43-ий порт используется для подключение сетевого управления интерконнектов к сети заказчика, трафик не тегированный.
 - 10Gi/44-ый порт используется для подключения к сети заказчика с тегированным трафиком.
- 10Gi/47-ой и 40Gi/3 порты используется для расширения интерконнектов системы хранения (1202).
- 10Gi/48-ой порт используется для подключения интерконнектов сети управления (1301) к интерконнектам системы хранения (1202).
- 40GE/1, 40GE/2 порты используются для подключения интерконнектов системы хранения (1202) для объединения в стек.

Данные о назначении портов интерконнектов сети управления

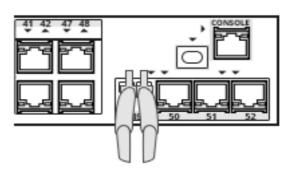

- Порты с 1-го по 45-ый, используются для подключения серверов.
- Порт 46-ой порт используется для подключение сетевого управления интерконнектов к сети заказчика, трафик не тегированный.
 - Порт 48-ой используется для подключения к интерконнекту управления оборудованием (1401).
 - Порт 49-ый используется для подключения к интерконнектам системы хранения (1202).

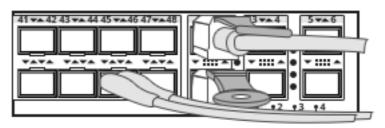

Данные о назначении портов интерконнектов управления оборудованием:

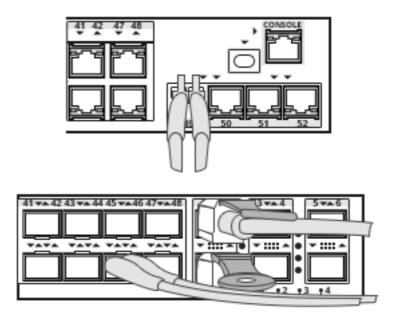
- порты с 1-го по 45-ый, используются для подключения серверов;
- порт 46-ой порт используется для подключение сетевого управления интерконнектов к сети заказчика, трафик не тегированный;
 - порты 47-ой и 48-ой используются для подключения к интерконнектов сети управления (1301).


Подключение интерконнектов системы хранения (1202) для объединения в стек

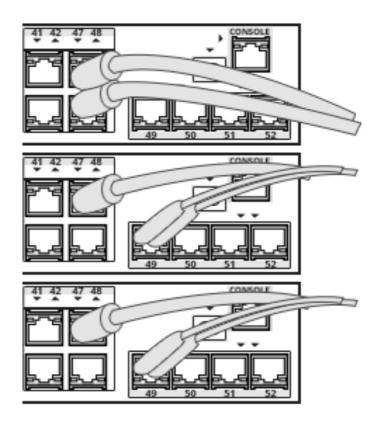
1. Подключите первый 40G-twinax-кабель в первый 40G-порт первого интерконнекта системы хранения и в первый 40G-порт второго интерконнекта системы хранения


2. Подключите второй 40G-twinax-кабель во второй 40G-порт первого интерконнекта системы хранения и во **второй** 40G-порт **второго** интерконнекта системы хранения

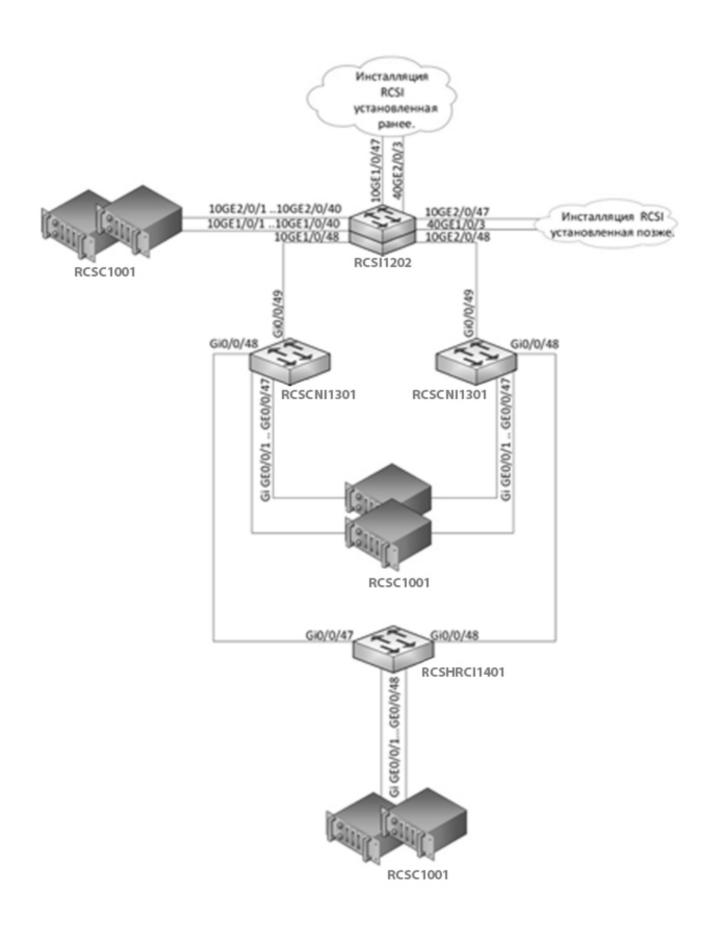



Подключение интерконнектов сети управления (1301) к интерконнектам системы хранения (1202)

1. Подключите оптический кабель в 49-й порт первого интерконнекта сети управления и в 48-й порт первого интерконнекта системы хранения.



2. Подключите оптический кабель в 49-й порт второго интерконнекта сети управления и в 48-й порт второго интерконнекта системы хранения.

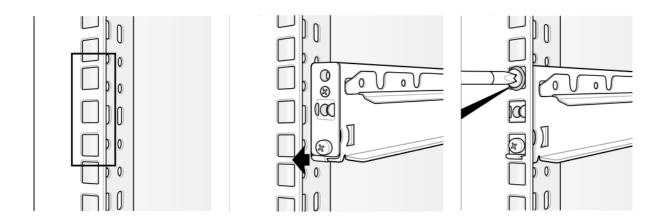


Подключение интерконнекта управления оборудованием (1401) к интерконнектам сети управления (1301)

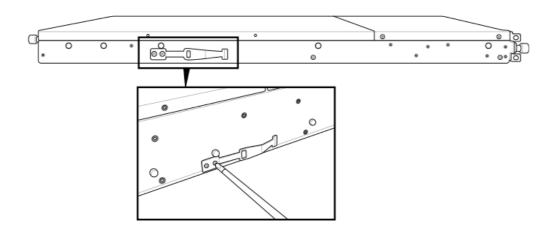
- 1. Подключите патч-корд в **47-й** порт интерконнекта управления оборудованием (1401) и в 48-й порт **первого** интерконнекта сети управления.
- 2. Подключите патч-корд в **48-й** порт интерконнекта управления оборудованием (1401) и в **48-й** порт **второго** интерконнекта сети управления.

Схема сетевого взаимодействия системы хранения данных RCS

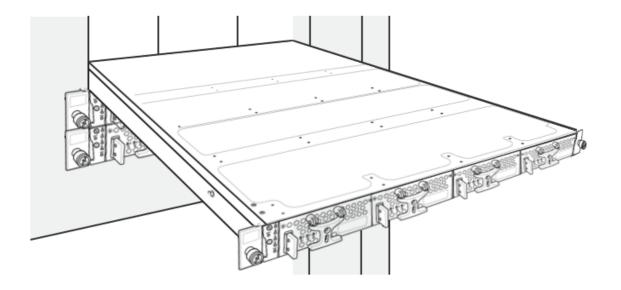
Глава 9. Установка координаторов системы хранения данных RSC

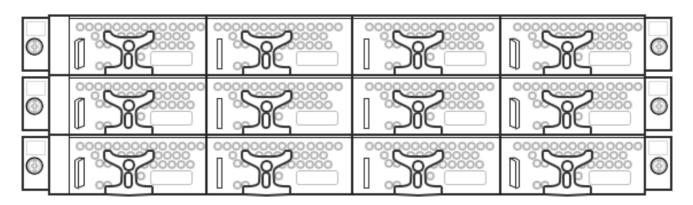

В этой главе описаны порядок установки и коммутации координаторов системы хранения данных RCS.

Координаторы системы хранения предназначены для координации системы хранения данных.

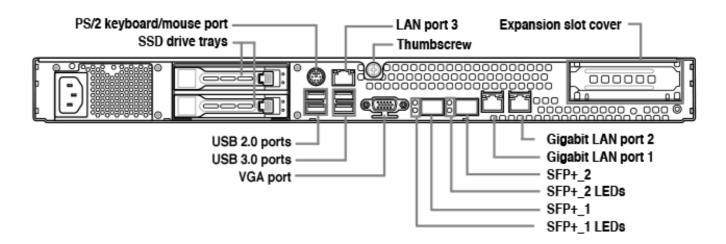

ОСТОРОЖНО! Для предотвращения повреждения оборудования подъем, перемещение и установку модулей необходимо выполнять вдвоем.

Последовательность монтажа координаторов:

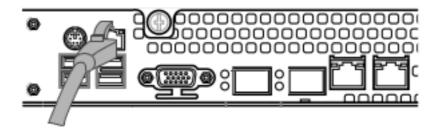

1. Определите место монтажа, установите полозья и закрепите их.

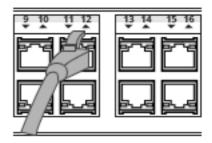

2. Закрепите фиксаторы на корпусе модуля.

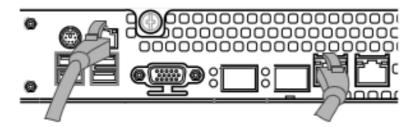
3. Установите модуль на полозья и задвиньте.

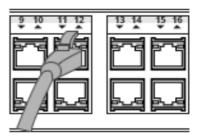


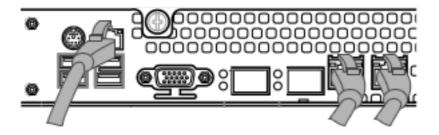
4. Закрутите шайбу фиксатора слева и справа.

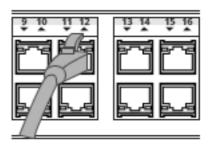

Коммутация координатора системы хранения

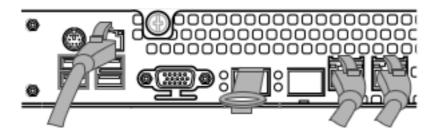

Схема размещения портов координатора

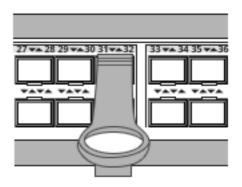

Принцип коммутации координатора:

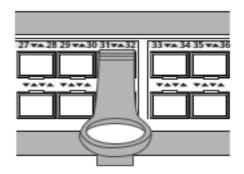

1. Подключите первый коннектор патч-корда в LAN port 3, подключите второй коннектор патч-корда в назначенный порт интерконнекта управления оборудованием (1401)

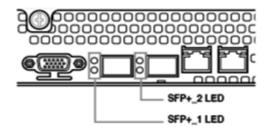


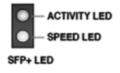

2. Подключите первый коннектор патч-корда в Gigabit LAN port 1, подключите второй коннектор патч-корда в назначенный порт первого интерконнекта сети управления (1301-1)




3. Подключите первый коннектор патч-корда в Gigabit LAN port 2, подключите второй коннектор патч-корда в назначенный порт второго интерконнекта сети управления (1301-2)

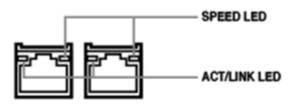

4. Подключите первый коннектор twinax-кабеля в SFP+ port 1, подключите второй коннектор twinax-кабеля в назначенный порт первого интерконнекта системы хранения (1202-1)


5. Подключите первый коннектор twinax-кабеля в SFP+ port 2, подключить второй коннектор twinax-кабеля в назначенный порт второго интерконнекта системы хранения (1202-2)



Статус подключения портов 10Gbit координатора:

SFP+ status LEDs



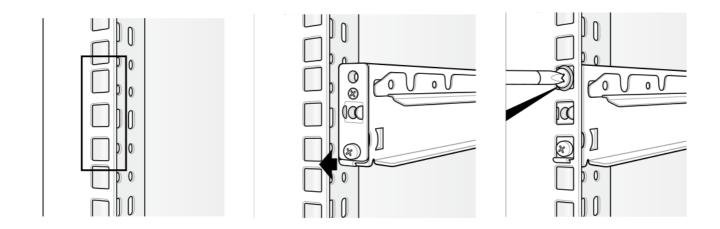
Activity/Link LED		Speed LED		
Status	Description	Status	Description	
OFF	No activity	OFF	-	
DUNKING	Data activity	AMBER	1 Gbps connection	
BLINKING	Data activity	GREEN	10 Gbps connection	

Статус подключения портов 1Gbit координатора:

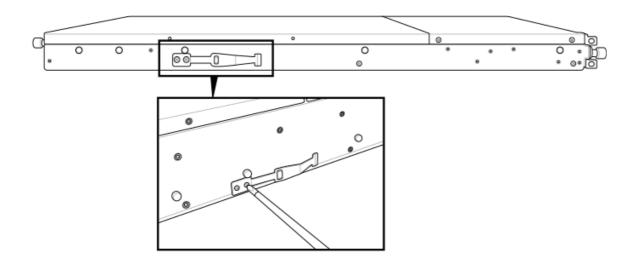
LAN (RJ-45) LEDs

ACT/LI	NK LED	SPEED LED		
Status	Description	Status	Description	
OFF	No link	OFF	10 Mbps connection	
GREEN	Linked	ORANGE	100 Mbps connection	
BLINKING	Data activity	GREEN	1 Gbps connection	

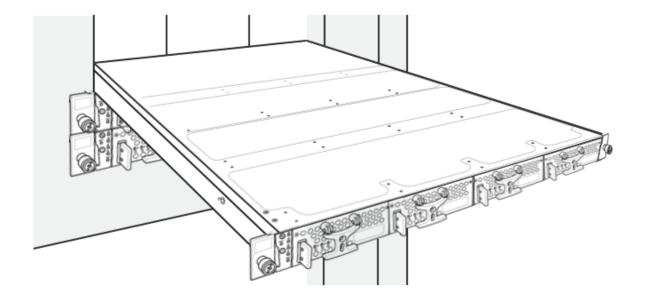
Глава 10. Установка модулей хранения системы хранения данных RCS

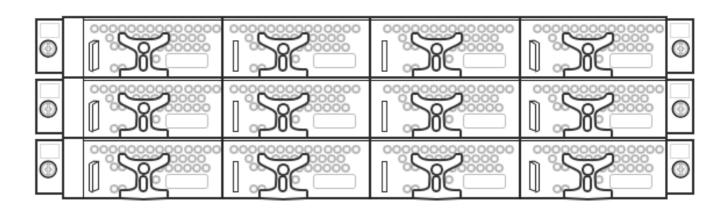

В этой главе описаны порядок установки и коммутации модулей хранения системы хранения данных RCS.

Модули хранения системы хранения предназначены для хранения данных.

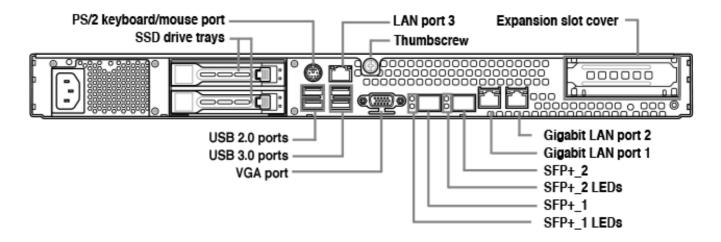

ОСТОРОЖНО! Для предотвращения повреждения оборудования подъем, перемещение и установку модулей необходимо выполнять вдвоем.

Последовательность монтажа модулей хранения:

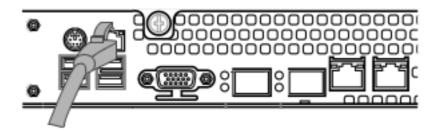

1. Определите место монтажа, установить полозья и закрепить их.

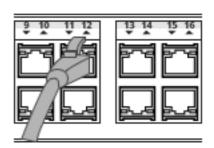

2. Закрепите фиксаторы на корпусе модуля.

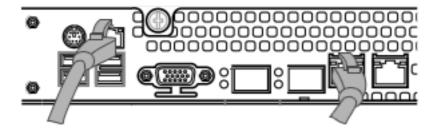
3. Установите модуль на полозья и задвинуть.

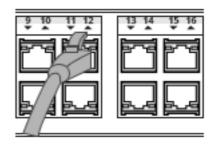


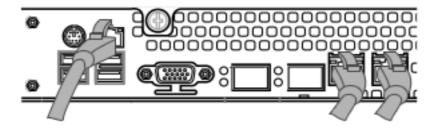
4. Закрутите шайбу фиксатора слева и справа.

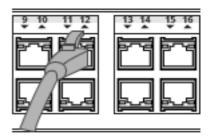

Коммутация модуля хранения

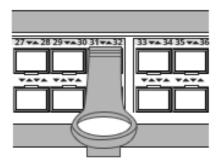

Схема размещения портов модуля хранения

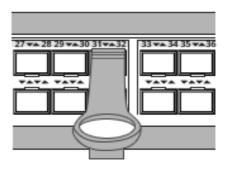

Принцип коммутации модуля:

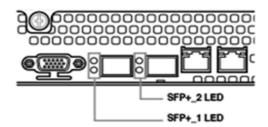

1. Подключите первый коннектор патч-корда в LAN port 3, подключите второй коннектор патч-корда в назначенный порт интерконнекта управления оборудованием (1401)




2. Подключите первый коннектор патч-корда в Gigabit LAN port 1, подключите второй коннектор патч-корда в назначенный порт первого интерконнекта сети управления (1301-1)

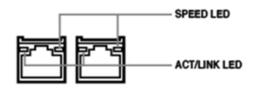

3. Подключите первый коннектор патч-корда в Gigabit LAN port 2, подключите второй коннектор патч-корда в назначенный порт второго интерконнекта сети управления (1301-2)


4. Подключите первый коннектор twinax-кабеля в SFP+ port 1, подключите второй коннектор twinax-кабеля в назначенный порт первого интерконнекта системы хранения (1202-1)


5. Подключите первый коннектор twinax-кабеля в SFP+ port 2, подключите второй коннектор twinax-кабеля в назначенный порт второго интерконнекта системы хранения (1202-2)

Статус подключения портов 10Gbit модуля хранения:

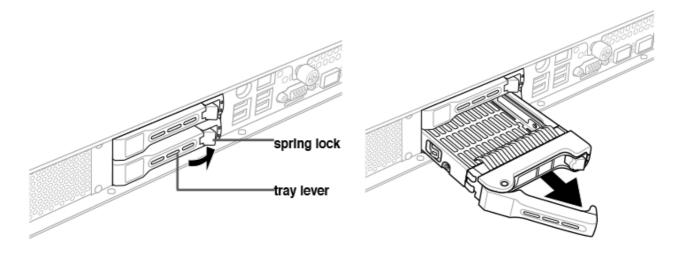
SFP+ status LEDs



Activit	y/Link LED		Speed LED		
Status	Description	Status	Description		
OFF	No activity	OFF	-		
DI INIZINO	Data activity	AMBER	1 Gbps connection		
BLINKING	Data activity	GREEN	10 Gbps connection		

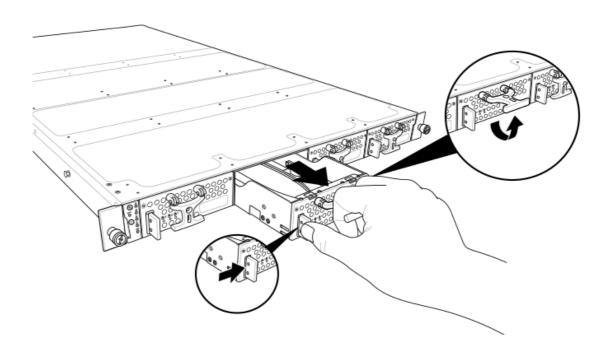
Статус подключения портов 1Gbit модуля хранения:

LAN (RJ-45) LEDs

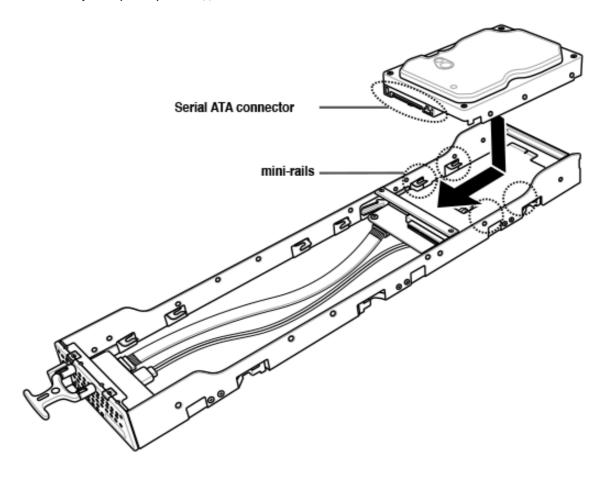


ACT/LI	NK LED	SPEED LED		
Status	Description	Status	Description	
OFF	No link	OFF	10 Mbps connection	
GREEN	Linked	ORANGE	100 Mbps connection	
BLINKING	Data activity	GREEN	1 Gbps connection	

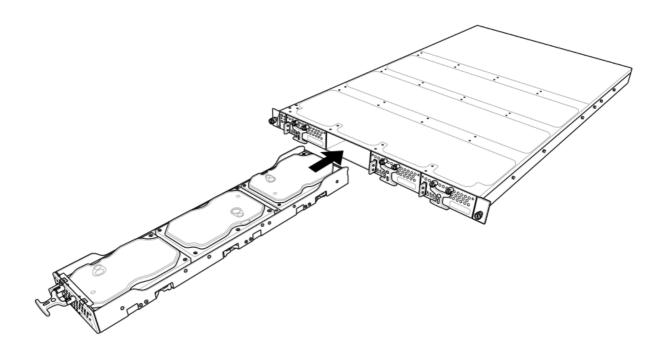
Обслуживание модуля хранения


Замена дисков

Для замены дисков в слотах 2,5" нужно нажать на фиксатор и потянуть ручку.



После замены диска вставить лоток обратно.


Для замены дисков в слотах 3.5" нужно одновременно зажать фиксатор и потянуть ручку кассеты на себя.

Произвести замену и зафиксировать диск в кассете.

Возврат дисков осуществляется вводом кассеты в корпус до упора.

